Data Envelopment Analysis Models In The Presence Of Ratio Data and Non-Discretionary Factors
author
Abstract:
This article doesn't have abstract
similar resources
Efficiency of Centralized Structures in Data Envelopment Analysis Ratio Models
This paper investigates the centralized resource allocation with centralized structures by using the data envelopment analysis-ratio (DEA-R) models. To this end, it proposes a method to determine the resource allocation of centralized structures such that the ratio of inputs to outputs are minimized.
full textA method to consider Non-Discretionary factors in Data Envelopment Analysis
The technique for efficiency measurement known as Data Envelopment Analysis (DEA) has been extended to allow on-discretionary inputs that affect production. Several methods exist for measuring efficiency to control these factors in production. This paper review these approaches, providing a discussion of strengths and weaknesses and highlighting potential limitations. In addition, a new approac...
full textA data envelopment analysis model with discretionary and non-discretionary factors in fuzzy environments
Data envelopment analysis (DEA) is a methodology for measuring the relative efficiencies of a set of decision-making units (DMUs) that use multiple inputs to produce multiple outputs. The standard DEA models assume that all inputs and outputs are crisp and can be changed at the discretion of management. While crisp input and output data are fundamentally indispensable in the standard DEA evalua...
full textAn extended of multiple criteria data envelopment analysis models for ratio data
One of the problems of the data envelopment analysis traditional models in the multiple form that is the weights corresponding to certain inputs and outputs are considered zero in the calculation of efficiency and this means that not all input and output components are utilized for the evaluation of efficiency, as some are ignored. The above issue causes the efficiency score of the under evalua...
full textEstimating Returns to Scale in the Presence of Undesirable Factors in Data Envelopment Analysis
This research identifies returns to scale (RTS) of efficient decision making units (DMUs) with desirable (good) and undesirable (bad) inputs and outputs by presenting a new DEA (data envelopment analysis) approach. In this study, we first introduce a new input-output oriented model to determine efficient DMUs in the presence of undesirable factors and then, returns to scale of these DMUs are es...
full textMy Resources
Journal title
volume 4 issue 4
pages 1095- 1110
publication date 2016-11-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023